गुणांक ज्ञात कीजिए

$(x+3)^{8}$ में $x^{5}$ का

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by

${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$

Assuming that $x^{5}$ occurs in the $(r+1)^{t h}$ term of the expansion $(x+3)^{8},$ we obtain

${T_{r + 1}} = {\,^8}{C_r}{(x)^{8 - r}}{(3)^r}$

Comparing the indices of $x$ in $x^{5}$ in $T_{r+1},$

We obtain $r=3$

Thus, the coefficient of $x^{5}$ is ${\,^8}{C_3}{(3)^3} = \frac{{8!}}{{3!5!}} \times {3^3} = \frac{{8 \cdot 7 \cdot 6 \cdot 5!}}{{3 \cdot 2 \cdot 5!}} \cdot {3^3} = 1512$

Similar Questions

${(1 + x)^n}$ के विस्तार में  $p$ वें तथा $(p + 1)$ वें पदों के गुणांक क्रमश:  $p $ व  $q$ हों, तो $p + q = $

${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद होगा

यदि ${(1 + x)^n}$ के विस्तार में द्वितीय, तृतीय तथा चतुर्थ पदों के गुणांक समान्तर श्रेणी $(A.P.)$ में हों, तब $n$ बराबर है

  • [IIT 1994]

$\left(2 \mathrm{x}^2+\frac{1}{2 \mathrm{x}}\right)^{11}$ के प्रसार में $\mathrm{x}^{10}$ तथा $\mathrm{x}^7$ के गुणांको का निरपेक्ष अंतर बराबर है

  • [JEE MAIN 2023]

यदि $n$, बहुपद ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  + \sqrt {5{x^3} - 1} }}} \right]^8}$ की घात है, तथा $m$ इसमें स्थित $x ^{ n }$ का गुणांक है, तो क्रमित युग्म $( n , m )$ बराबर है $:$

  • [JEE MAIN 2018]